Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 183: 108377, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103344

RESUMO

Antibiotic resistance genes (ARGs) are widespread environmental pollutants of biological origin that pose a significant threat to human, animal, and plant health, as well as to ecosystems. ARGs are found in soil, water, air, and waste, and several pathways for global dissemination in the environment have been described. However, studies on airborne ARG transport through atmospheric particles are limited. The ARGs in microorganisms inhabiting an environment are referred to as the "resistome". A global search was conducted of air-resistome studies by retrieving bioaerosol ARG-related papers published in the last 30 years from PubMed. We found that there is no dedicated methodology for isolating ARGs in bioaerosols; instead, conventional methods for microbial culture and metagenomic analysis are used in combination with standard aerosol sampling techniques. There is a dearth of information on the bioaerosol resistomes of freshwater environments and their impact on freshwater sources used for drinking and recreational activities. More studies of aerobiome freshwater environments are needed to ensure the safe use of water and sanitation. In this review we outline and synthesize the few studies that address the freshwater air microbiome (from tap water, bathroom showers, rivers, lakes, and swimming pools) and their resistomes, as well as the likely impacts on drinking and recreational waters. We also discuss current knowledge gaps for the freshwater airborne resistome. This review will stimulate new investigations of the atmospheric microbiome, particularly in areas where both air and water quality are of public health concern.


Assuntos
Água Potável , Microbiota , Animais , Humanos , Genes Bacterianos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Lagos
2.
Microbiol Resour Announc ; 12(5): e0019823, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37098958

RESUMO

The draft genome sequence of strain Bacillus thuringiensis SS2 consists of 426 contigs assembled at the scaffold level, totaling 5,030,306 bp, and contains 5,288 putative PATRIC protein-coding genes, including genes responsible for total benzoate consumption, degradation of halogenated compounds, heavy metal tolerance/resistance, biosynthesis of secondary metabolites, and microcin C7 self-immunity protein.

3.
J Hazard Mater ; 451: 131105, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893594

RESUMO

A pristine soil was artificially contaminated with 2-chlorodibenzo-p-dioxin (2-CDD) and separated into three portions. Microcosms SSOC and SSCC were seeded with Bacillus sp. SS2 and a three-member bacterial consortium respectively; SSC was untreated, while heat-sterilized contaminated soil served as overall control. Significant degradation of 2-CDD occurred in all microcosms except for the control where the concentration remained unchanged. Degradation of 2-CDD was highest in SSCC (94.9%) compared to SSOC (91.66%) and SCC (85.9%). There was also a notable reduction in the microbial composition complexity both in species richness and evenness following dioxin contamination, a trend that nearly lasted the study period; particularly in setups SSC and SSOC. Irrespective of the bioremediation strategies, the soil microflora was practically dominated by the Firmicutes and at the genus level, the phylotype Bacillus was the most dominant. Other dominant taxa though negatively impacted were Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria. Overall, this study demonstrated the feasibility of microbial seeding as an effective strategy to cleanup tropical soil contaminated with dioxins and the importance of metagenomics in elucidating the microbial diversities of contaminated soils. Meanwhile, the seeded organisms, owed their success not only to metabolic competence, but survivability, adaptability and ability to compete favourably with autochthonous microflora.


Assuntos
Bacillus , Dioxinas , Microbiota , Poluentes do Solo , Biodegradação Ambiental , Solo , Poluentes do Solo/metabolismo , Bactérias/metabolismo , Bacillus/metabolismo , Microbiologia do Solo
4.
Microbiol Resour Announc ; 11(7): e0023622, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35758755

RESUMO

Serratia marcescens SSA1 was isolated from a dump site with a history of incineration. Its DNA of 5.05 Mbp has a GC content of 59.65%, with 77 tRNA genes and 3 rRNA genes. Its 4,909 putative PATRIC protein-coding genes include genes responsible for the degradation of dioxins and other xenobiotics and total consumption of benzoate.

5.
Biodegradation ; 31(1-2): 123-137, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32342243

RESUMO

Bacterial diversity and aerobic catabolic competence of dioxin-degrading bacterial strains isolated from a polluted soil in the tropics were explored. Isolation of bacteria occurred after 12 months of consecutive enrichment, with dioxin congeners serving as the only sources of carbon and energy. Seventeen strains that were isolated were subsequently screened for dioxin metabolic competence. Among these isolates, five had unique amplified ribosomal DNA restriction analysis (ARDRA) patterns out of which two exhibiting good metabolic competence were selected for further investigation. The two strains were identified as Bacillus sp. SS2 and Serratia sp. SSA1, based on their 16S rRNA gene sequences. Bacterial growth co-occurred with dioxin disappearance and near stoichiometric release of chloride for one ring of the chlorinated congeners. The overall percentage removal of dibenzofuran (DF) by strain SS2 was 93.87%; while corresponding values for 2,8-dichlorodibenzofuran (2,8-diCDF) and 2,7-dichlorodibenzo-p-dioxin (2,7-diCDD) were 86.22% and 82.30% respectively. In the case of strain SSA1, percentage removal for DF, 2,8-diCDF and 2,7-diCDD were respectively 98.9%, 80.97% and 70.80%. The presence of two dioxin dioxygenase catabolic genes (dxnA1 and dbfA1) was investigated. Only the dbfA1 gene could be amplified in SS2 strain. Results further revealed that strain SS2 presented higher expression levels for the alpha-subunit of DF dioxygenase (dbfA1) gene during growth with dioxins. The expression level for dbfA1 gene was higher when growing on DF than on the other chlorinated analogs. This study gives an insight into dioxin degradation, with the catabolic potential of strains SS2 and SSA1 (an enteric bacterium) within the sub-Sahara Africa. It further shows that dioxin catabolic potential might be more prevalent in different groups of microorganisms than previously believed. Few reports have demonstrated the degradation of chlorinated congeners of dioxins, particularly from sub-Saharan African contaminated systems.


Assuntos
Dioxinas/análise , Bactérias , Biodegradação Ambiental , Dibenzofuranos , RNA Ribossômico 16S , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...